

4-H LIVESTOCK SKILL-A-THON CONTEST GENERAL RULES AND INFORMATION 2023-2024 TEXAS 4-H ROUNDUP

Date: Tuesday, June 4, 2024

Time / Location: Hildebrand Equine Complex

OBJECTIVE

The Livestock Skill-a-thon contest tests a 4-H member's knowledge and comprehension of animal science and livestock management practices. The contest provides an opportunity for youth to gain and develop production livestock skills and life skills through a competitive environment.

TEAM AND CONTESTANT ELIGIBILITY

- 1. The contest is an Invitational (does not require you to qualify at a District level contest)
- 2. Contest open to any eligible 4-H member in 9-12 grades, Senior 4-H Age Division as of 9/1/2023.
- 3. Teams consist of three or four members. In teams in which there are four members, all will compete, but the member receiving the lowest overall score will be automatically declared the alternate. The scores of the alternate will not be included in any of the team totals but will be considered in making all individual awards. Teams consisting of three members will have no alternate and all members' scores will count in determining individual and team awards.
- 4. Teams or individuals who have competed in the North American International Livestock Exposition, which is the designated National 4-H Contest for Livestock Skill-a-thon are not eligible to compete in State 4-H Roundup.

CONTEST METHOD OF CONDUCT

- 1. The contest will be divided into four areas: identification, judging (which consist of meat cuts, wool and/or hay classes), quizzes (quality assurance quiz, and industry quiz.), and team exercises. Contestants will be divided into groups and have time limits for each station area.
- 2. The contest will utilize a scantron form. #480-5b (Meat Skill-a-thon)
- 3. While competing in the event, there will be no conferring between contestants or between a contestant and anyone else except as directed by contest officials. Contestants will be allowed specific time limits to complete each individual class.
- 4. Contestants may use a blank steno pad or a clipboard, blank paper, and a calculator. The contestants may bring no books, notes, pamphlets, or other reference material into the contest area. All electronic communication devices of any kind are prohibited. Contest officials reserve the right to check all contestant's notepads or clipboards to make sure they are blank just prior to the contest. Violators are subject to contest dismissal.
- 5. Contestants are not to pick up or touch any item that is being identified or evaluated in the individual competition classes, unless otherwise directed by contest officials. (*The exception is wool classes*)
- Coaches are invited to review contest materials in the contest area at the conclusion of the event.

\$ (\$)

CONTEST CLASSES

The following is a list of common skill-a-thon classes. Please note that actual classes may deviate from this list in an effort to keep current with a rapidly changing livestock industry. All pictures, equipment items, retail meat cuts, feed samples, judging classes, and quizzes will be developed using resources obtained from Texas A&M University and West Texas A&M University.

Identification (Four Stations will be Selected)

- 1. **Livestock equipment Identification**: Identify the proper name for pieces of equipment used in livestock production.
- Livestock Breed Identification: Identify from photographs or pictures livestock (beef cattle, swine, sheep
 and goat) breeds. Contestants must also match the breed with the most appropriate description supplied
 for each breed.
- 3. **Retail meat cut identification:** Identify beef, lamb, and pork retail cuts from the National 4-H Meat Judging Retail ID List. Contestants will identify the retail cut specie, primal cut, and retail cut name.
- 4. Feed Sample Identification: identify various samples of feeds and indicate their classification.

Judging (Three Classes will be Selected)

- 5. **Hay Judging class**: Rank a class of four hay samples with analysis information and answer questions about the classes.
- 6. Wool Judging class: Rank a class of four fleeces and answer questions about the class.
- 7. **Retail Meat Judging class**: Rank a class of four retail meat cuts (beef, pork, or lamb) and answer questions about the class

Quizzes

- 8. **Individual Quality Assurance exercise**: Demonstrate how to read a medicine label, calculate withdrawal times, complete a treatment record, and make responsible management decisions regarding quality assurance.
- 9. Industry Quiz: Complete a 30-question multiple choice quiz concerning the total livestock industry.

Team Exercises

10. For senior complete teams only. This area will not affect individual scores. Each team will complete 2 team exercises at Texas 4-H Roundup. Team members are allowed to collaborate on team exercises. Possible team exercises include Keep/Cull, Livestock Performance and Marketing, Quality Assurance, and Nutrition and Feeding. Meats and Carcass Evaluation, Reproduction. (Examples included later in this document)

AWARDS

Top 10 individuals overall

Top 5 teams overall

*Overall total score will consist of a combination of judging classes, identification scores, and quizzes.

Top 3 teams will be recognized during the Tuesday Evening Assembly. The placings will be announced at that time.

NATIONAL CONTEST

The first-place senior level team qualifies to advance to the 2024 National 4-H Livestock Skill-a-thon contest at the North American International Livestock Exposition (NAILE) in Louisville, KY.

TEXAS A&M GRILIFE EXTENSION

Texas 4-H Youth Development Program

RESOURCES This list is just some of the potential resource information available. Please feel free to utilize other sources as you deem appropriate.

Swine Resources

- National Swine Registry Skill-a-thon Training https://nationalswine.com/resources/resources-main.php
- Texas A&M Swine Skill-a-thon study guide https://animalscience.tamu.edu/livestock-species/swine/skillathon/
- Oklahoma State Swine Breeds http://afs.okstate.edu/breeds/swine
- National Pork Board: http://www.pork.org/youth-and-education/skillathon-quiz-bowl/

Beef Resources

- Texas A&M Beef Skill-a-thon https://beefskillathon.tamu.edu/
- Iowa State Beef Skill-a-thon https://www.ans.iastate.edu/beef-skillathon
- Oklahoma State Cattle Breeds http://afs.okstate.edu/breeds/cattle/

Sheep & Goat Resources

- Sheep and Goat programs http://animalscience.tamu.edu/livestock-species/sheep-goats/
- Iowa State Sheep Skill-a-thon https://www.ans.iastate.edu/sheep-skillathon
- Oklahoma State Sheep Breeds http://afs.okstate.edu/breeds/sheep
- Oklahoma State Goat Breeds http://afs.okstate.edu/breeds/goats
- Maryland Small Ruminant Page https://www.sheepandgoat.com/skillathon

Meat Judging and Identification Resources

- http://www.meatscience.org/students/meat-judging-program/meat-judging-resources/
- http://aggiemeat.tamu.edu/meat-identification-pictures/
- https://aggiemeat.tamu.edu/example-classes/

Equipment Identification

- Nasco https://www.enasco.com/
- Valley Vet https://www.valleyvet.com
- Sullivan's Supply https://www.sullivansupply.com/
- Weaver Livestock https://www.thewinnersbrand.com

Feed Sample Identification

- https://quizlet.com/22837845/feed-stuff-identification-flash-cards/
- https://extension.msstate.edu/sites/default/files/publications/publications/P2834.pdf

Wool Judging

https://texas4-h.tamu.edu/wp-content/uploads/Judging-Wool-and-Mohair.pdf

Hay Judging

- https://cherokee.agrilife.org/4-h/hay-judging/
- https://extension.umd.edu/sites/extension.umd.edu/files/2021-03/Hay_Judging_Example_Class.pdf

National Livestock Skill-a-Thon

https://extension.umd.edu/locations/charles-county/4-h-youth-development/animal-projects

Texas FFA Livestock Quiz Question Bank

https://www.texasffa.org/docs/2017-21%20Livestock QBank Export Key 71269.pdf

\$ (\$) \$ (\$)

Meat Skillathon Form #480-5b

Incorrect Marks Correct Mark

Ø X a a

Team Name / Additional Info

('	Team #							
0	0	0	0					
1	1	1	1					
2	2	2	2					
3	3	3	3					
4	4	4	4					
5	5	5	5					
6	6	6	6					
7	7	7	7					
8	8	8	8					
9	9	9	9					

Co	de
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9

Sta	ite		Last Name										Fi	rst	Nar	ne					
	\bigcirc	\bigcirc	0		0	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	0	0	0		0	0	
A	(A)	A	(A)	A	(A)	A	(A)	A	A	A	(A)	A	A	A	A	A	(A)	A	(A)	A	A
В	B	B	B	B	B	B	B	B	B	B	В	B	В	B	B	B	B	B	В	B	В
C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
D	(D)	(D)	(D)	D	(D)	(D)	(D)	D	(D)	D	D	D	D	(D)	0	D	D)	D	D	D	(D
E	(E)	E	(E)	E	E	E	(E)	E	E	Œ	E	Œ	E	E	(E)	E	E	E	E	E	Œ
F	(F)	(F)	E	Ð	Ð	E	E	E	(F)	(E)	(F)	(F)	(F)	(F)	E	Ð	E	E	(F)	(F)	Œ
G	G	(G)	G	G	G	G)	G	(G)	(G)	(G)	G	(G)	G	G)	G	G	G	G	G	G	C
\subseteq	(H)	H)	(H)	H	(H)	H)	H	H	_	H	H	H	H	H)	(H)	H	H	H	H		Œ
		①	(I)	(I)	(T)	(I)	(I)	(I)						(L)	(I)	(I)	(I)	(I)			
J	J	J	J	(I)	1	(J)	J	(J)	(J)	(J)	J	(J)	(J)	J	1	1	J	(I)	J	(J)	(
K	K	(K)	(K)	(K)	(K)	(K)	(K)	(K)	(K)	(K)	(K)	(K)	K	(K)	K	K	K	(K)	K	K	(F
(II)	(L) (M)	(M)					M		M	(L)		(II)	(M)	(M)				M		(M)	
(N)	(N)	(N)	M	M	M	M)	_	M	_	M	M	(N)	(N)	(N)	M	M	M		M	(N)	
0	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N) (O)	(N)	(N) (O)	(N)	(N)	(N)	(N)	0	N O	N O	(N)	(N)	(N)	C
P	P	(P)	P	P	P	(P)	P	(P)	(P)	(P)	(P)	(P)	P	(P)	(P)	(P)	P	P	(P)	(P)	Œ
Q	Q	(P)	Q	Q	Q	(Q)	Q	Q	Q	Q	Q	Q	Q	(Q)	Q	Q	0	Q	Q	Q	C
R	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	R	(R)	R	(R)	(R)	(R)	(F
S	S	(S)	(S)	(\$)	(\$)	(S)	(S)	(S)	(\$)	(\$)	(S)	(S)	S	(S)	(\$)	(\$)	(S)	(\$)	(\$)	(\$)	(3
T		(T)								(T)		(T)							(T)	(T)	
Ū	Ū	(U)	(U)	U	(U)	(U)	(U)	(U)	(U)	(U)	(U)	(U)	U	(U)	0	(U)	(U)	(U)	U	U	σ
V	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(V)	
$\overline{}$	(W)	(W)	(W)	(W)	W	(W)	W	(W)	W	W	W	W	W	(W)	(W)	(W)	(W)	(W)	W		V
(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	O
Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)	_	(Y)	(Y)	(Y)	(Y)	(Y)	(Y)		

		PI	acing	Classe	S		
			e answer	in each d	column!		
	1	_2	_3	4	_5	_6	
11234	Ŏ		Ŏ		Ŏ		1234
² 1243							1243
³1324							1324
41342							1342
51423							1423
61432							1432
72134	0						2134
82143							2143
92314							2314
¹⁰ 2341							2341
¹¹ 2413							2413
¹² 2431							2431
¹³ 3124							3124
14 3142							3142
¹⁵ 3214							3214
¹⁶ 3241							3241
¹⁷ 3412							3412
18 3421							3421
¹⁹ 4123							4123
²⁰ 4132							4132
²¹ 4213							4213
²² 4231							4231
²³ 4312							4312
²⁴ 4321							4321
	4	_2	3	4	5	6	

Team Quality Assurance							
1 A B C D E	11ABCDE	21ABCDE					
2 A B C D E	12ABCDE	22ABCDE					
3 A B C D E	13ABCDE	23ABCDE					
4 A B C D E	14ABCDE	24ABCDE					
5 A B C D E	15ABCDE	25ABCDE					
6 A B C D E	16ABCDE	26ABCDE					
7 A B C D E	17ABCDE	27ABCDE					
8 A B C D E	18ABCDE	28ABCDE					
9 A B C D E	19ABCDE	29ABCDE					
10 A B C D E	20ABCDE	30 A B C D E					

	Team Keep/Cull					
#	Keep	Cull				
1	K	C				
≝ 2	K	C				
₫3	K	e				
<u>e</u> 4	Ç	5				
Seps Seps	~	Ç				
₹7	K	0				
<u>a</u> 8	K	C				
		0				

T	eam	ı Qı	ues	tior	าร
1	(A)	B	C	D	Œ
2	A	B	C	D	Œ
3	A	B	C	D	Œ
4	A	B	C	D	Œ
5	<u>A</u>	B	C	D	Œ
6	<u></u>	B	C	D	Œ
0	٥	B	C	D	Œ
9		B	C	D	Œ
J		B	C	D	E
10	A	B	C	D	E

Individual Quality Assurance Quiz								
	11(A) (B) (C) (D) (E)	21ABCDE						
2 (A) (B) (C) (D) (E)	12ABCDE	22ABCDE						
3 (A) (B) (C) (D) (E)	13ABCDE	23ABCDE						
4 (A) (B) (C) (D) (E)	14ABCDE	24ABCDE						
5 A B C D E	15ABCDE	25ABCDE						
6 A B C D E	16ABCDE	26ABCDE						
7 A B C D E	17ABCDE	27ABCDE						
8 A B C D E	18ABCDE	28ABCDE						
9 A B C D E	19ABCDE	29ABCDE						
10 A B C D E	20 A B C D E	30 A B C D E						

	Industry Quiz															
1	A	B	C	D	Œ)	11 🖪	B	C	D	E)	21	A	B	C	D	Œ
2	A	B	C	D	Œ)	12 🖪	B	C	D	E)	22	A	B	C	D	Œ
3	A	B	C	D	Œ)	13 🔼	B	C	D	E	23	A	B	C	D	Œ
4	A	B	C	D	E	14 🖪	B	C	D	E	24	A	B	C	D	E
5	A	B	C	D	E	15 🖪	B	C	0	E	25	A	B	C	D	Œ
6	<u></u>	B	C	D	E	16 🖪	B	C	D	E	26	A	B	C	D	Œ
7	٥	B	C	D	E	17 🖪	B	C	D	E	27	A	B	C	D	Œ
8	٥	B	C	D	(E)	18 🖪	B	C	D	E	28	A	B	C	0	
9		B	C	D	E	19 <u>A</u>	B	C	D	E	29	A	B	C	D	E
10		B	C	D	Œ	20 <u>A</u>	B	C	D	Œ	30	A	B	C	D	E

		Meat Identifica	tion	
ID#	Species	Primal	Retail	Cookery
1	BPL O	ABCDE	ABCDE	DMD/M
		FGHOJ	FGHJJ	
2	BPL (ABCDE	ABCDE	DMD/M
		F G H J J	FGHJJ	
3	BPL O	ABCDE	ABCDE	DMD/M
3		F G H OI	F G H OIO	
4	BPL ((A) (B) (C) (D) (E)	A B C D E	DMD/M
		FGHJJ	FGHJJ	
5	BPL O	(A) (B) (C) (D) (E)	ABCDE	DMD/M
J		F G H O	F G H OIO	
6	BPL ((A) (B) (C) (D) (E)	A B C D E	DMD/M
•		F G H J J	F G H J J	
7	BPL O	(A) (B) (C) (D) (E)	ABCDE	DMD/M
		F G H OI	F G H OIC	
8	BPL ((A) (B) (C) (D) (E)	A B C D E	DMD/M
0		F G H J J	FGHJJ	
9	BPL O	ABCDE	A B C D E	DMD/M
3		F G H OI	F G H OO	
10	BPL ((A) (B) (C) (D) (E)	A B C D E	DMD/M
10		F G H J J	FGHJJ	

Breed Identification						
Bree	Description					
1 A B C D E	1 (A) (B) (C) (D) (E)					
2 A B C D E	2 A B C D E					
3 A B C D E	3 (A) (B) (C) (D) (E)					
4 A B C D E	4 (A) (B) (C) (D) (E)					
5 A B C D E	5 A B C D E					
6ABCDE	6 A B C D E					
7 A B C D E	7 A B C D E					
8ABCDE	8 A B C D E					
9 A B C D E	9 (A) (B) (C) (D) (E)					
10 A B C D E	10 A B C D E					

Equipment Identification			
Equipment	Use		
2 A B C D E F G H I J	2 A B C D E F G H I J		
3 A B C D E F G H 1 J	3 A B C D E F G H I J		
4 A B C D E F G H I J	4 A B C D E F G H I J		
5 A B C D E F G H 1 J	5 A B C D E F G H 1 J		
6 A B C D E F G H 1 J	6 A B C D E F G H I J		
7 A B C D E F G H 1 J	7 A B C D E F G H 1 J		
8 A B C D E F G H I J	8 A B C D E F G H I J		
9 A B C D E F G H 1 J	9 A B C D E F G H 1 J		
10 A B C D E F G H I J	10 A B C D E F G H I J		

Feed Identification	
Feed	Class.
	1 (A)B() (C)
2 A B C D FF G H I J	2 (A)B) (C)
3 A B C D F F G H T J	3 (A)B) (C)
4 A B C D FF G H I J	4 (A)B) (C)
$5 \land \bigcirc B \bigcirc D \bigcirc F \bigcirc G \bigcirc D \bigcirc J$	5 (A)B) (C)
6ABCDEFGHIJ	6 (A)B) (C)
7 A B C D F F G H I J	7 (A)B) (C)
8 A B C D FF G H I J	8 (A)B) (C)
$9 \land B \lor D \lor F \lor G \lor D \lor D \lor B \lor D \lor B \lor D \lor B \lor D \lor B \lor B$	9 (A)B) (C)
10 A B C D FF G H I J	10 AB C

Equipment Identification Guide

click here for the National Study Guide

Note: Most questions in the equipment identification section will be selected from this list. However, the contest committee reserves the right to utilize equipment not listed here for the contest.

utilize equipment not listed here for the contest.				
Al Catheter	Emasculator	Paddle Stick		
AI Saddle	Ewe Spoon	Paint Sticks/Chalk		
Ampule	Farrowing Stall	Pig Resuscitator		
Ankle Strap/Leg Tag	Feeding Tube	Pritchard Nipple		
Artificial Vagina (AV)	Freeze Brand	Prolapse Ring		
Automatic Dose Syringe	Frick Speculum	Rattle Cup		
Backfat Ruler	Gambrel Restrainer	Ribeye Grid		
Balling Gun	Gestation Stall	Rice Pelvimeter		
Barnes Dehorner	Hand Shears	Rope Halter		
Breeding Sheaths	Heat or Hot Iron	Scotch Comb		
Brisket Tag	Heat Lamp	Scrotal Tape		
Calf Straps	Heatmount Detector	Semen Cane and Goblet		
Calf Weaner	Hog Flapper	Semen Straw		
Cattle Prod	Hog Snare	Shearing Screwdriver		
Cattle Speculum	Hoof Blocks	Sheep Paint		
Chin Ball Marker	Hoof Trimmer	Sorting Panel		
CIDR	Hoof Trimmer	Squeeze Chute		
CIDR Applicator	Implant Gun	Straw Cutter		
Cowslips	Insemination Rod	Tattoo Gun		
Curry Comb	Lamb Puller	Teat Slitter		
Dose Syringe	Lambing Jug	Thaw Unit		
Dummy Sow or Mount	Marking Harness	Tooth Nippers		
Ear Notchers	Nipple Waterer	Traditional Ear Tagger		
Elastrator	Nitrogen Tank	Traditional Ear Tags		
Electric Dehorner	Nose Tongs	Trimming Stand		
Electric Prod	OB or Dehorning Wire	Tube Dehorner		
Electro-Ejaculator	Obstetrical Snare	Vanometer		
Electronic Ear Tags	Odor Spray for Gilts, Sows, & Boars	Wool Card		
Emasculatome	Oral Calf Drencher	Wool Rake/Shedding Comb		

Beef Breed Identification Guide 2023-2024 Note: Most questions in the breed identification section will be selected from this list. However, the contest committee reserves the right to utilize livestock breeds not listed here for the contest. click here for the National Study Guide **Breed Traits & Characteristics** Polled, solid black, medium size, originated in Scotland, introduced to US in 1873, great marbling, **Angus** early maturity, the founder believed black was the proper color for the breed instead of the red recessive gene. Beefalo American bison and cattle mix, dense, fine coat varied in color, large breed, developed in California during the 1970s, weather resistant, beef is low in fat and cholesterol, low birth rates. Brahman, Hereford and Milking, Shorthorn mix, light to dark red, medium size, developed in Texas Beefmaster during the early 1950s, Heat and insect resistant, high fertility, First American composite breed. Polled, black with white "belt" on barrel, large size, originated in Scotland, easy calving, disease **Belted Galloway** resistant, adaptable, The Belted Galloway Association was previously named the Dun and Belted Galloway Association before 1951. Light grey to red with loose skin in neck, area, prominent hump, medium size, originated in India **Brahman** Heat, drought and insect resistant, weak calving intervals, popularity limited to southern region of US, breed produces an oily secretion which creates a natural insect repellent. Braford Cross between a Braham and Hereford, red with white underbelly, head, and feet, similar to the Hereford, stockier than a Hereford due to the Brahman influence, Brafords were developed both in Australia in 1946 and in Florida in 1947, strong maternal ability, early puberty and calving ease, heat and insect resistance, tend to thrive in warmer climates. Brahman and angus mix, polled, black with hump, medium to large size, developed in US in 1949, **Brangus** weather resistant, good maternal traits, late maturity, Registered Brangus must be 3/8 brahman and 5/8 angus. White, large size, developed in France, introduced to US in 1936, fast growth, muscling, late Charolais maturity, all color variations of the breed are considered "recorded" by the American Charolais Association except for black. Chianina White to grey with black nose, eyes, tongue and switch, large size, originated in Italy, genetics were introduced in 1971 but the first American bull was born in 1972, resistant to eye problems, heat, insect and disease resistance, growth rate, small udders, late maturity. Chestnut or light to deep red, medium size, originated in England, introduced to US in 1623, heat and Devon disease resistant, early maturity, growing calving difficulty amongst, offspring with larger sires, coats are short during summer and grow longer for winter. Mainly black but can be red or dun, small size, originated in Ireland, longevity, early maturity, good Dexter temperament, known to the Irish as the "Poor man's cattle". Black, red or spotted with varied, coloration, horns that curve upward, small to medium size, Florida Cracker developed in Florida, heat and disease resistant, small scale meat production, Purebreds are endangered due to excessive crossbreeding. Polled; black, dun, red or white with long curly coat, medium size, originates in Scotland, introduced Galloway to US in 1866, tolerant of harsh colder climates, excellent maternal traits. Polled, reddish gold to russet or black, medium to large size, originates in Germany, introduced to US Gelbvieh in 1971, early puberty, large scrotums, The South African Gelbvieh Association reported that when bitten by ticks, blood flow to that region is constricted so that the tick starves. Horns pointing downward, red with white, face, belly, feet and tail, large size, originates in England, Hereford introduced to US in 1817, high libido, fertility, adaptable, named after Herefordshire. Golden-red with lighter pigment around, eyes, muzzle, belly and rear area, large size, originates in Limousin France, introduced to US in early 1930s, carcass quality, high fertility, known as the "butcher's animal" in France.

rexas 4-n routil Developine	
Maine Anjou	Black or red with white markings on head, belly, rear legs and tail, medium to large size, originates in France, introduced to US around 1970 by artificial insemination, feed efficiency, aggressive bulls, One of the largest French cattle breeds
Murray Grey	Dark grey to light silver, dun or black, medium size, originates in Australia, introduced to US around 1972, good temperament, good marbling, Preferred imported beef breed of the Japanese
Piedmontese	White to light grey with black horns, hooves, eyes, ears, mouth and tail, medium size, originates in Italy, introduced to US around 1979, carcass quality, early maturing, low fat beef, the myostatin gene is naturally mutated which allows unrestricted muscle development or double muscling
Pinzgauer	Dark chestnut with white marks on back, flanks and belly, medium to large size, originates in Austria, introduced to US around 1974, fertility, easy calving, high weaning weights, adaptable, breed was crossbred with red Friesian to improve milk output and udder shape in 1969.
Polled Hereford	Polled, red with white belly, face and feet, large size, developed in lowa, docile temperament, Fast maturity, adaptable, Breed began with a mutation that left offspring without horns.
Red Angus	Polled, red, medium size, originates in England/ Scotland, maternal traits, longevity, high fertility, Intramuscular marbling
Salers	Polled or horned, dark mahogany to black, originates in France, introduced to US in 1975, Large, well-shaped pelvic area, calving ease, good soundness
Santa Gertrudis	Brahman and shorthorn mix, cherry red with short smooth coat, developed in Texas in the 1920s, heat tolerance, tick and bloat resistant, ease of calving, all present-day Santa Gertrudis descend from Monkey; the breed's foundation sire
Scottish Highland	Red, black, yellow, dun and white with long silky hair, big horns pointing upward, small to medium size, originates in Scotland, introduced to US in late 1890s, tolerant of extreme colder temperatures, Great mothering ability, less tolerant of tropical settings, Late maturity, Beef breed of choice for the British Royal Family; the family keeps a large herd.
Shetland	White with black to brown markings (resembles a Holstein), small to medium size, originates in Scotland, rapid growth, fertility, ease of calving, classified as at risk by the Rare Breeds Survival Trust in Britain
Shorthorn	Red or roan and white (sometimes speckled), medium to large size, originates in England, introduced to the US in 1783, Calving ease, Fertility, Rapid growth, Directors of the Beef Shorthorn Cattle Society called to have Maine Anjou blood mixed into the bloodline for better muscling.
Simmental	Gold to red with white markings, large size, originates in Switzerland, Introduced to the US in 1967, High and long-term fertility, short calving intervals, Great mothering ability, considered one of the oldest cattle breeds in the world, Known as "fleckvieh" in Germany and Austria
Sussex	Dark red with a white tail switch, medium size, Originates in England, High fertility, Easy calving, Great mothering ability, can travel long distances on rough terrain, Breed development for beef industry didn't occur until the 1800s
Tarentaise	Tan with darkening around eyes and neck, black nose, udder and hooves, medium size, originates in France, introduced to the US in 1973, Early puberty, Good pelvic size, Adaptability, Used solely for milk production in France
Telemark	Horns pointing upward, white with brown streak on barrel and brown ears, Small to medium size, Originates in Norway, Good grazers, Norway's oldest breed of cattle
Texas Longhorn	Long horns pointing upward, color variation and spotting, Medium to large size, developed in Texas, Disease and parasite resistant, Aggressive, Lean meat, Breed fashioned entirely in US
Wagyu	Straight horns that darken with length, black or red, medium size, originates in Japan, Introduced to US in 1976, Early maturity in females, Low birth weights, Exceptional marbling, some breeders give cattle beer in the summer to stimulate appetite and massage to reduce stress and muscle stiffness
Watusi	Long and thick horns, brown and white pattern variations, medium size, originates in Uganda, Introduced to US in 1960, Tolerant of extreme weather, Low birth weights, Lean meat, Breed was primarily used for milk in Africa because large herds were a symbol of wealth
White Park	White with black ears and muzzles, medium size, Originates in Wales, Good grazers, good marbling, Breed nearly extinct—less than 50 left in the US

Swine Breed Identification Guide 2023-2024 Note: Most questions in the breed identification section will be selected from this list. However, the contest committee reserves the right to utilize livestock breeds not listed here for the contest. click here for the National Study Guide **Traits & Characteristics Breed** Yorkshire, Lincolnshire and Bedfordshire mix, Black with white points, erect ears, medium size, Berkshire originates in England, Introduced to US in 1823, Fast growth, Flavorful meat, Cleanness, Marketed as black pork in Japan and held at premium price Chester White White, medium droopy ears, medium to large size, developed in Pennsylvania between 1815-1818, Mothering ability, Soundness, Muscle quality, originally named Chester County White Descends of red hogs brought to America with Columbus and Desoto, Light golden to mahogany red, Duroc droopy ears, large size, Developed in the New York/ New Jersey area during the 1800s, weather resistant, mothering ability Black with white "belt" across shoulders that covers the front legs, erect ears, large size, originates in Hampshire England/ Scotland, introduced to the US between 1825-1835, Mothering ability, Longevity in sows, Minimal back fat, produces large loin eyes, The breed has several nicknames: McGee hog, McKay, saddleback, ring middle and thin rind Duroc, Chester White and Poland China cross, Red with white face, feet and belly, droopy ears, Hereford Medium size, developed in Missouri in 1902, Early maturity, Feed efficiency, Quiet and docile disposition, The breed's popularity began to decline during the 1960s White, droopy ears slanting forward, large size, originates in Denmark, Introduced to the US in 1934. Landrace Ideal for crossbreeding, Farrow large piglets, Heavy milkers, Denmark refused to export purebreds for many years to defend their title as the chief bacon exporting country Blonde, red, black or white with curly hair, erect ears are most common, Medium to large size, Mangalitsa Originates in Hungary, Germany, Strong maternal traits, small litters (usually about 6 piglets), Resistant to harsh colder climates, Meat has a longer shelf life than other pork, classified as a rare breed, The black Mangalitsa went extinct during the 1970s Black with wrinkled skin, long droopy ears, Small to medium size, Originates in China, Introduced to Meishan the US in 1989, Slow growth rate, early maturity, large amount of back fat, One of the most prolific breeds of pigs in the world—it's common that sows have 2 litters of 15-16 offspring per year Mulefoot Black, erect ears, medium size, Originates in US, Fast growth rate, Hardy, Toes are fused together which makes the feet resemble hooves, fitting the name mulefoot White with gray to black spots, erect ears, medium to large size, originated in Belgium, Prolific **Pietrain** females, good lean to fat ratio (meat tends to be more lean), weak mothering ability, weak milkers. Carries the halothane gene which causes porcine stress syndrome, Purebreds are rarely used for meat Poland China Black with white points, droopy ears, medium to large size, developed in Ohio in 1850, Feed efficiency, Lean pork, One of the oldest American swine breeds Red Wattle Red with wattles, erect ears with floppy tips, Medium to large size, originates in Australia, Introduced to US during the late 1700s, Good mothers, Adaptable, Lean carcass, Better suited for outdoor foraging, Breed has never reached popularity in America Saddleback Large and deep in the body, Black coloring with a white band around the withers, shoulders, and front legs, some white is allowed on the nose, tail, and hind feet and it is lop-eared, Hardy and have thrived in hot climatic conditions, such as Nigeria, Strong maternal qualities Poland china and Big China (now extinct) mix, black and white with spots, large size, developed in **Spots** Indiana, Introduced to US between the late 1800s and early 1900s, Feed efficiency, Gain rate, Longevity in sows, referred to as "spots" after the National Spotted Poland China Record changed its name to National Spotted Swine Record Red, erect ears, medium size, originates in Ireland, Introduced to US in 1882, Excellent mothers, **Tamworth** Resistant to sunburn, Lean meat, Most active breed of swine, almost extinct in America after WWII White, erect ears, large size, originates in England, Introduced to US during the 1830s, Soundness, Yorkshire Low back fat, Lean meat, called "English large white" in England, Most popular swine breed in America

Goat Breed Identification Guide 2023-2024 Note: Most questions in the breed identification section will be selected from this list. However, the contest committee reserves the right to utilize livestock breeds not listed here for the contest. click here for the National Study Guide			
American Cashmere	Varied in color, horned, Small to medium size, originates in Australia/ New Zealand, Introduced to US during the 1980s, Tolerant, Independent, primarily used for fiber and cashmere production, 60% of the world's supply of cashmere is produced in China		
Angora	Mainly white but can be a variety of colors with long curly hair, long ears, small size, Originates in Asia Minor, Great browsers, not prolific, doesn't do well in wet climates, Weak offspring, Produces the finest mohair—mainly used for mohair production instead of meat production		
Boer	White body with brown on neck and face area, long ears and horned, large size, Originates in South Africa, introduced to the US in 1993, Good browsers, Early maturity, Extended breeding season, Low maintenance, first caprine breed involved in meat performance testing		
Kiko	Varied coloration but mainly white, horned, Medium to large size, Developed in New Zealand, introduced to the US in the 1990s, Parasite resistance, Rapid growth rate in kids, Maternal instincts, The original breeders still control the breed in New Zealand		
Myotonic	White and black to brown with spots, horned, Medium to large size, Originates in US (eastern), Breed development in Tennessee in 1880, Good mothers, Easy kidding, Prolific, carries a recessive gene activated by excitement or fear that causes the goat to stiffen and faint		
Nubian	Varied coloration but mainly red or tan with short hair, roman nose and long ears, large size, developed in England, Introduced to US in 1896, Heat tolerant, Adaptable, Extended breeding seasons		
Pygmy	Mainly an agouti pattern but can be varied in color, straight medium-long hair with erect ears, Small size, originates in Cameroon, Introduced to US in 1959, Docile disposition, Multiple breeding seasons, primarily used as pets in America		
Spanish	Variation in color with straight medium long hair, large ears, small size, originates in Spain, Introduced to US in the 1540s, Hardy, Active, can breed out of season, Breed is listed on the American Breed Conservancy watch list because purebred numbers are threatened by crossbreeding		

Note: Most questions in th	Sheep Breed Identification Guide 2023-2024 be breed identification section will be selected from this list. However, the contest committee reserves the right to utilize livestock breeds not listed here for the contest. click here for the National Study Guide
Border Leicester	White with bald face and black nose, long erect ears and roman nose; polled, large size, developed in England, Introduced to US in the 1850s, Excellent mothers, Strong lambs, Fast growth, Two strains of the breed were developed – bluecaps and redlegs, Red legs were preferred because of their hardy nature, Most Leicester descend from redlegs
Cheviot	Long white wool with black muzzle and bald white face, polled with long erect ears; can be horned, large size, originates in England/ Scotland, Introduced to US in 1838, Hardy, Easy lambing, Good mothers, Early maturity, Breed has a distinctive helical crimp that helps reduce fleece rot and fly strike
Columbia	Lincoln and Rambouillet cross, White with bald face, horned, large size, developed in Wyoming in 1912, developed by the USDA, Hardy, Adaptable, Fast growth
Corriedale	White wool with white face and black nose, polled, large size, Originates in North Otago, New Zealand, Introduced to the US in 1914, High fertility, Adaptable, Good carcass quality, second most popular breed of sheep in the world after the merino
Dartmoor	White to golden with curly wool, white face; horned, medium size, Originates in England, Lean carcass, Tolerant of harsh winters, good carcass quality
Dorper	White with black face and neck area or white only, can be horned, medium size, Originates in South Africa, Mothering ability, Rapid growth, Adaptability, World desired sheep skin–called cape glovers
Dorset	White with open faces, horned, medium size, originates in England, Introduced to the US in 1860, Hardy, Adaptable, Prolific, Good mothers, Lambing ease, Most popular white face breed in US
Finnsheep	White with bald face and white legs, polled, medium size, originates in Finland, Introduced to the US in 1968, Prolific, fast growth
Hampshire	White with black legs and dark face, polled, large size, originates in England, Introduced to the US in 1840, Soundness, Feed conversion, Fast growth
Jacob	White with black spots, four black distinctive horns, Small to medium size, originates in England, Introduced to the US in the early 1900s, Lambing ease, Resistant to parasites, not good in extreme temperatures, Hoof problems, Weak flocking behavior, used as guard animals, named after Jacob, the first person recorded in the bible to practice selective breeding of livestock
Katahadin	St. Croix, Southdown, Hampshire, Suffolk cross, White to brown pattern variation with long fine hair in chest area, polled, Medium to large size, developed in Maine, Introduced to the US in 1976, Adaptable, Resistant to parasites, Mothering ability, Moderate flocking behavior, Breed named after Mt. Katahdin– the highest mountain in Maine
Lincoln	White, black or grey with long locks of wool, polled, Medium to large size, Originates in England, Introduced to the US in the 1800s, Average prolificacy, Muscular carcass, Breed has the longest fleece in the world
Montadale	Columbia and cheviot cross, White with bare legs and open face, black nostrils and hooves; polled, medium size, Developed in US during the 1940s, Strong maternal traits, Strong lambs, Rapid growth, Lean carcasses
Oxford	White with dark face and legs, polled, large size, originates in England, Introduced to US in 1846, Docile, Easy lambing, Early maturity, Largest of the down breeds
Rambouillet	White with open face, horned, Medium to large size, originates in France, Introduced to US in 1840, Adaptable, Hardy, Breed developed on Louis XVI's farm
Romanov	Grey or tan with black legs and faces, sometimes has a white crest on head; polled, Medium to large size, originates in Russia, Introduced to US in 1980s, Early puberty, no specific breeding season, Low birth mortality, Known for quadruplets, quintuplets and sextuplets

Shetland	Varied coloration with long wool, black face and legs; horned, Small to medium size, Originates in
	Scotland, Introduced to US in 1986, Tails don't need docking–fluke shaped, good mothers, Lambing
	ease, Slow maturity, Smallest of British sheep breeds
Shropshire	White to straw with black face and feet, polled, medium size, originates in England, Introduced to US
	in 1855, Adaptable, Longevity, Prolific, Named the "farm flock favorite"
South African Merino	White with open face, polled, Medium to large size, Originates in South Africa, High fertility, Wool
	ideal for sportswear because it absorbs unpleasant odors
Southdown	Gray to brown with wool on face and legs, polled, Small to medium size, Originates in England,
	Introduced to US in 1824, Early maturing, Lambing ease, Adaptable to wet climates, oldest breed of
	the down sheep
St. Croix	Mainly white but can be brown, tan or black; polled, medium size, Originates in Caribbean,
	Introduced to US in 1975, Excellent foragers, High fertility, Parasite resistant, Adaptable, Classified as
	a rare breed
Suffolk	White with black head, legs and hooves; polled, large size, originates in England, Introduced to US in
	1888, Hardy, Great mothers, Spider lamb syndrome common breed, The University of Idaho played a
	major part in advancing the breed in western states
Targhee	Ramboulliet, Lincoln and Corriedale cross, Light brown to white with bald face, polled, large size,
	Developed in Idaho, Introduced to US in 1930s, Long breeding season, Mothering ability, Popular in
	South Dakota
Texel	White and brown with bald face or legs, black nose and hooves; polled, medium size, Developed in
	Netherlands, Introduced to US in 1985, Muscle development, Feed efficiency, Leanness, Fast growth,
	Breed broke the world record for sheep sales being sold at \$231,000 in Scotland in 2009
Tunis	White or cream with copper-red legs and face, polled, medium size, Originated from North Africa and
	Middle East area, Introduced to US in 1799, Disease resistance, Tolerant, Feed efficiency, Extended
	breeding season, Excellent mothers, classified as rare by the American livestock Breeds Conservancy,
	Increasing popularity in Eastern states

American Royal National 4-H Retail Meat Identification Codes

Beef Primal	Retail Cut Name	Cookery Method	Specie	Primal	Name	Cookery
Brisket	Corned	Moist	В	В	89	М
	Flat Half, Bnls	Moist	В	В	15	М
	Whole, Bnls	Moist	В	В	10	М
Chuck	7-bone Pot-Roast	Moist	В	С	26	М
	Arm Pot-Roast	Moist	В	С	03	М
	Arm Pot-Roast, Bnls	Moist	В	С	04	М
	Blade Roast	Moist	В	С	06	М
	Eye Roast, Bnls	Dry/Moist	В	С	13	D/M
	Eye Steak, Bnls	Dry	В	С	45	D
	Mock Tender Roast	Moist	В	С	20	М
	Mock Tender Steak	Moist	В	С	48	М
	Petite Tender	Dry	В	С	21	D
	Shoulder Pot Roast (Bnls)	Dry/Moist	В	С	29	D/M
	Top Blade Steak (Flat Iron)	Dry	В	Ċ	58	D
Flank	Flank Steak	Dry/Moist	В	D	47	D/M
Loin	Porterhouse Steak	Dry	В	F	49	D
	T-bone Steak	Dry	В	E	55	D
	Tenderloin Roast	Dry	В	F	34	D
	Tenderloin Steak	Dry	В	F	56	D
	Top Loin Steak	Dry	В	F	59	D
	Top Loin Steak, Bnls	Dry	В	F	60	D
	Top Sirloin Cap Steak, Bnls	Dry	В	F	64	D
	Top Sirloin Steak, Bnls Cap Off	Dry	В	F	63	D
	Top Sirloin Steak, Brils	Dry	В	F	62	D
	Tri Tip Roast	Dry	В	F	40	D
Plate	Short Ribs	Moist	В	G	28	M
riate	Skirt Steak, Bnls	D/M	В	G	54	D/M
Rib	Rib Roast	Dry	В	Н	22	DIVI
KID	Ribeye Roast, Bnls		В	Н	13	D
	Ribeye Steak, Brils	Dry Dry	В	Н	45	D
			В	Н	50	D
B	Ribeye Steak, Lip-On	Dry		1		ner de serve
Round	Bottom Round Roast	Dry/Moist	B B		08 09	D/M
	Bottom Round Rump Roast	Dry/Moist		0.80	10,00,0	D/M
	Bottom Round Steak	Moist	В	1	43	M
	Eye Round Roast	Dry/Moist	В	1	14	D/M
	Eye Round Steak	Dry/Moist	В	1	46	D/M
	Round Steak	Moist	В	1	51	M
	Round Steak, Bnls	Moist	В	1	52	M
	Tip Roast - Cap Off	Dry/Moist	В	1	36	D/M
	Tip Steak - Cap Off	Dry	В	1	57	D
	Top Round Roast	Dry	В	1	39	D
	Top Round Steak	Dry	В	1	61	D
Various	Beef for Stew	Moist	В	N	82	M
	Cubed Steak	Dry/Moist	В	N	83	D/M
	Ground Beef	Dry	В	N	84	D
Variety Meats	Retail Cut Name	Cookery Method	Specie	Primal	Name	Cookery
	Heart	Dry/Moist	В	М	76	D/M

Pork Primal	Retail Cut Name	Cookery Method	Specie	Primal	Name	Cookery
Ham/Leg	Pork Fresh Ham Center Slice	Dry/Moist	P	E	44	D/M
	Pork Fresh Ham Rump Portion	Dry/Moist	P	E	25	D/M
	Pork Fresh Ham Shank Portion	Dry/Moist	P	E	27	D/M
	Smoked Ham, Bnls	Dry	P	E	91	D
	Smoked Ham, Center Slice	Dry	Р	Ε	90	D
	Smoked Ham, Rump Portion	Dry	P	E	96	D
	Smoked Ham, Shank Portion	Dry	Р	Ε	97	D
	Tip Roast, Bnls	Dry	P	E	35	D
	Top Roast, Bnls	Dry	P	E	38	D
Loin	Back Ribs	Dry/Moist	Р	F	05	D/M
	Blade Chops	Dry/Moist	P	F	66	D/M
	Blade Chops, Bnls	Dry/Moist	P	F	67	D/M
	Blade Roast	Dry/Moist	Р	F	06	D/M
	Butterflied Chops Bnls	Dry	Р	F	68	D
	Center Loin Roast	Dry	P	F	11	D
	Center Rib Roast	Dry	Р	F	12	D
	Loin Chops	Dry	P	F	70	D
	Rib Chops	Dry	Р	F	71	D
	Sirloin Chops	Dry	Р	F	73	D
	Sirloin Cutlets	Dry	P	F	53	D
	Sirloin Roast	Dry	Р	F	30	D
	Smoked Pork Loin Chop	Dry	P	F	93	D
	Smoked Pork Loin Rib Chop	Dry	Р	F	95	D
	Tenderloin, Whole	Dry	Р	F	34	D
	Top Loin Chops	Dry	Р	F	74	D
	Top Loin Chops, Bnls	Dry	Р	F	75	D
	Top Loin Roast, Bnls	Dry	P	F	37	D
Shoulder	Arm Picnic, Whole	Dry/Moist	Р	J	02	D/M
	Arm Roast	Dry/Moist	Р	J	03	D/M
	Arm Steak	Dry/Moist	Р	J	41	D/M
	Blade Boston Roast	Dry/Moist	Р	J	07	D/M
	Blade Steak	Dry/Moist	Р	j	42	D/M
	Smoked Picnic, Whole	Dry/Moist	Р	J	94	D/M
Side/Bellv	Slab Bacon	Dry	Р	K	98	D
	Sliced Bacon	Dry	Р	K	99	D
	Fresh Side	Moist	Р	K	17	М
Spareribs	Pork Spareribs	Dry/Moist	Р	L	32	D/M
Various	Country Style Ribs	Dry/Moist	Р	N	69	D/M
	Ground Pork	Dry	Р	N	85	D
	Hock	Moist	Р	N	86	М
	Pork Cubed Steak	Dry/Moist	P	N	83	D/M
	Pork Sausage Links	Dry	P	N	87	D
	Sausage	Dry	P	N	87	D
	Smoked Pork Hock	Moist	P	N	92	М

Variety Meats	Retail Cut Name	Cookery Method	Specie	Primal	Name	Cookery
	Heart	Dry/Moist	В	М	76	D/M
	Heart	Dry/Moist	L	M	76	D/M
	Heart	Dry/Moist	Р	M	76	D/M
	Kidney	Dry/Moist	В	M	77	D/M
	Kidney	Dry/Moist	L	M	77	D/M
	Kidney	Dry/Moist	Р	M	77	D/M
	Liver	Dry/Moist	В	M	78	D/M
	Liver	Dry/Moist	L	M	78	D/M
	Liver	Dry/Moist	Р	М	78	D/M
	Oxtail	Moist	В	М	79	М
	Tongue	Dry/Moist	В	M	80	D/M
	Tongue	Dry/Moist	L	М	80	D/M
	Tongue	Dry/Moist	Р	М	80	D/M
	Tripe	Moist	В	M	81	М

Lamb Primal	Retail Cut Name	Cookery Method	Specie	Primal	Name	Cookery
Breast	Ribs (Denver Style)	Dry/Moist	L	Α	24	D/M
Leg	American Style Roast	Dry	L	E	01	D
	Center Slice	Dry	L	E	44	D
	Frenched Style Roast	Dry	L	E	16	D
	Leg Roast, Bnls	Dry	L	Ε	18	D
	Sirloin Chops	Dry	L	E	73	D
	Sirloin Half	Dry	L	E	31	D
Loin	Loin Chops	Dry	L	F	70	D
	Loin Roast	Dry	L	F	19	D
Rib	Rib Chops	Dry	L	Н	71	D
	Rib Chops Frenched	Dry	L	Н	72	D
	Rib Roast	Dry	L	Н	22	D
	Rib Roast, Frenched	Dry	L	Н	23	D
Shoulder	Arm Chops	Dry/Moist	L	J	65	D/M
	Blade Chops	Dry/Moist	L	J	66	D/M
	Square Cut	Dry/Moist	L	J	33	D/M
Various	Shank	Moist	L	N	88	M

Feedstuffs Identification Guide 2023-2024 Note: Most questions in the feed identification section will be selected from this list. However, the contest committee reserves the right to utilize feedstuffs not listed here for the contest. **Feed Name** Class Alfalfa Cubes Protein Alfalfa, Dehydrated Protein Barley, Rolled Energy Beet Pulp, Dried Energy Canola Meal Protein Copper Sulfate Mineral Corn, Cracked Energy Corn, Ground Energy Corn, Steam Flaked Energy Corn, Whole Energy Cottonseed Hulls Energy Cottonseed Meal Protein Cottonseed, Whole **Protein or Energy** Dicalcium Phosphate Mineral **Dried Distillers Grain** Energy Feather Meal Protein Fish Meal Protein Limestone Mineral Milo, Ground Energy Milo, Whole Energy Molasses, Dried Energy Molasses, Liquid Energy Oats, Rolled Energy Oats, Whole Energy **Peanut Meal** Protein Range Cubes Protein or Energy Rice Hulls Energy Rye, Whole Energy Soybean Hulls Energy Soybean Meal Protein Soybeans, Whole Protein Sunflower Meal Protein Trace-Mineral Mineral Urea Protein Wheat, Whole Energy Wheat Middlings Energy Whey, Dried Protein

Mineral

Revised: August 2023

White Salt

Team Exercise Examples

Note: The following are examples of team exercises. Actual scenarios may vary from these examples.

Beef Performance & Marketing Example

Score	Team Number
Deore	ream reamore

National 4-H Livestock Skillathon Contest Evaluation of Performance and Marketing Information

Directions: Your challenge is to determine which bid to use to receive the most total dollars for each pen of cattle. Also answer the designated questions. <u>Bids can only be used once.</u>

Pen 1: Straight bred Simmental cattle, spring born. On feed for 275 days. Diet consists of 62% high moisture corn, 28% wet gluten, 10% protein supplement on a dry matter basis. Vitamin E: 400 IU for the last 120 days. Implanted once with Compudose. Estimated Average Harvest Weight: 850 pounds. Dressing percent was 61%.

Pen 2: Straight bred Dairy cattle (Holsteins, and Brown Swiss), various birthdates. On feed for 300 days. Diet consists of 62% high moisture corn, 28% wet gluten, 10% protein supplement on a dry matter basis. Vitamin E: 400 IU for the last 120 days. Implanted once with Compudose. Estimated Average Harvest Weight: 850 pounds. Dressing percent of 59%.

Pen 3: Straight bred Limousin cattle, spring born. On feed for 150 days. Diet consists of 62% high moisture corn, 28% wet gluten, 10% protein supplement on a dry matter basis. Vitamin E: 400 IU for the last 120 days. Estimated Average Harvest Weight: 650 pounds.

You have been offered 4 bids for each of the 3 pens of cattle. The bids are:

Bid A: Live cattle price of \$70/cwt. Weighed at the local elevator with a 3% pencil shrink. You pay the trucking.

Bid B: In the meat bid of \$1.14 per pound of dressed weight for the Laura's Lean program. You stand the condemned cattle. You pay the trucking.

Bid C: Base price of \$130/cwt of carcass weight, with the following premiums and discounts (per 100 pounds of carcass weight). You stand the condemned cattle. The buyer pays trucking.

Prime	\$+35		Less than YG 1	\$25
Choice	\$+30		Yield Grade 1	\$15
Select	\$0		Yield Grade 2	\$0
Standard	-\$5		Yield Grade 3	-\$5
Dark Cutters	-\$30		Yield Grade 4	-\$15
		Carcass weights	over 800 pounds	-\$15
		1000	Under 550 pounds	-\$20

Bid D: Base price of \$138/cwt of carcass weight, with the following premiums and discounts (per 100 pounds of carcass weight). You stand the condemned cattle. The buyer pays half of the trucking.

		- I - I - I - I - I - I - I - I - I - I	D.
Prime	\$10	Yield Grade 1	\$7
Choice (Ave. & High)	\$4	Yield Grade 2	\$3
CAB	\$7	Yield Grade 3	\$0
(Black Hide, Ave & High	Choice)	Yield Grade 4	-\$20
Select	-\$8		
No rolls	-\$12	Over 951 pounds	-\$20
Standards & Dark Cutters	-\$30	Under 550 pounds	-\$20

Pen Number 1 (Simmental) Sold on Bid
Pen Number 2 (Dairy) Sold on Bid
Pen Number 3 (Limousin) sold on Bid
Questions based on the Simmental Pen: Additional information. You are feeding a group of 500 steers and weighed 525 pounds at the beginning and cost \$600/head. During the feed trial they consumed 1300 tons of feed which had an average cost of \$155 per ton. The total cost of other expenses were \$14 per head. Calculate the following measures.
1. To the nearest tenth, what was the average daily gainlb./day for the pen?
2. To the nearest tenth, what was the feed conversion on this pen?
3. To the nearest hundredth, what was the total feed cost per head \$/head
4. To the nearest hundredth, what was the average daily feed cost per head \$/head
5. To the nearest hundredth, what was the total feed cost per pound of gain \$/lb.
You have 2 minutes as a team to tell the station monitor why you selected your Bid choice for each plan.

EPD Keep/Cull Scenario

KEEP/CULL SUFFOLK EWES

SCENARIO: Suffolk breeder who keeps the superior females for replacements and sells commercial rams to be used on whiteface ewes. Feed and labor are above average.

No.	Date Lambed	90 - Day Wt. FEPD	Maternal Pounds Weaned FEPD	Maternal Lambs Born FEPD
1	1/27/19	-3.0	+0.9	+0.05
2	1/31/19	+3.4	+1.1	+0.06
3	1/31/19	+4.3	+1.8	+0.08
4	1/31/19	+3.1	+1.8	+0.08
5	2/03/19	+0.5	0.0	-0.01
6	2/06/19	+0.1	-0.3	-0.03
7	2/15/19	+2.8	+1.3	+0.05
8	3/03/19	+2.3	+0.8	+0.02

You will have 10 minutes to agree on your placing as a team and 2 minutes to present your reasons as a team.

TEAM:

Team Feeding & Nutrition Example

National 4-H Livestock Skillathon Contest Nutrition Station: Team Activity

Your Tear	m Tasks:		
A. Ide	entify the following feeds and whether they are consi	dered a forage/roug	ghage,
(F) concentrate (C), protein supplement (P) or vitamin/	mineral (M).	20
po	ints)	, , , ,	
Feed Iden	tification:		
Number	Feed Name	Description]
		(F,C, P, or M)	
1]
2			1
2]
3			
4			1
5			
6			1
-			
/			
8			1
0			1

Feed Analysis & Pricing Information:

Feed Number	Dry Matter	%CP	%TDN	Price
1	0.89	18.0	65	\$150/Ton
2	0.89	7.5	60	\$75/Ton
3	0.85	5.0	59	\$15/Ton
4	0.33	8.0	67	\$28/Ton
5	0.87	8.0	89	
6	0.89	13.3	77	
7	0.90	48.7	83	
8	0.30	29.5	112	
9	0.91	0.0	0	
10	0.97	0.0	0	

National 4-H Livestock Skillathon Nutrition Station Page 1 of 3

B. Ration Mixing:

Team Feeding Scenario:

You have 200 lb ewes that are in late gestation, currently in average condition and from which you expect approximately a 180% lamb crop. Select appropriate feeds from those above, weigh out the correct amount (as-fed basis) of each feed for a complete diet for one day that will meet one ewe's TDN, protein and dry matter intake needs.

- Assume that mineral needs will be met and balanced appropriately, so do not select any minerals for ingredients.
- Assume that you will be feeding at least some grain due to the limited rumen capacity of the late gestation ewe.
- Consider the overall cost of the ration.
- The table provides room for up to four ingredients. It may or may not be necessary to use four different ingredients.

When finished with the ration, your team will be expected to provide a brief explanation to judges regarding:

- the feeds you selected
- whether the ration meets the animal's needs
- · if there could be any improvements or changes made in your ration
- · how the cost of the ration compares to other potential rations
- · other information you deem appropriate.

	DR	AS-FED BASIS		
Name of Ingredient	Lbs of Dry Matter of this ingredient in ration	Lbs of CP provided by this ingredient	Lbs of TDN provided by this ingredient	Lbs of Ingredient to Feed
Totals from all Ingredients				
Ewe Nutrient Requirements				
Difference between provided and required nutrients				

Scoring for this section: 80 points based on the following:

- 20 points for selection of appropriate ingredients
- 20 points for approximate correct amounts
- 40 points for check that ration meets nutrient needs and oral explanation

National 4-H Livestock Skillathon Nutrition Station Page 2 of 3

Ewe Nutrient					
Requirements	Ewe	TDN	CP	Ca	P
	Wt	(Lbs/day)	(Lbs/day)	Oa.	
Maint.	110	1.2	0.21	2.0	1.8
The state of the s	132	1.3	0.23	2.3	2.1
	154	1.5	0.25	2.5	2.4
	176	1.6	0.27	2.7	2.8
	198	1.7	0.29	2.9	3.1
Flush-	110	2.1	0.33	5.3	2.6
ing	132	2.2	0.34	5.5	2.9
	154	2.3	0.36	5.7	3.2
	176	2.5	0.38	5.9	3.6
	198	2.6	0.39	6.1	3.9
Early Gest.	110	1.5	0.25	2.9	2.1
	132	1.6	0.27	3.2	2.5
	154	1.7	0.29	3.5	2.9
	176	1.8	0.31	3.8	3.3
	198	1.9	0.33	4.1	3.6
	440				
Late Gest	110	2.1	0.38	5.9	3.4
lo lamb	132	2.2	0.40	6.0	4.0
crop	154	2.3	0.42	6.2	4.5
(< 130 - 150%)	176	2.4	0.44	6.3	5.1
	198	2.5	0.47	6.4	5.7
I Cont	110	2.4	0.43	6.2	2.4
L. Gest hi lamb	110	2.4	0.43 0.45	6.2	3.4 4.0
crop	154	2.8	0.45	7.6	4.5
(175 - 225%)	176	2.9	0.49	8.3	5.1
(173-22370)	198	3.0	0.51	8.9	5.7
	190	3.0	0.51	0.9	3.7
		+ +			
Lactating	110	3.0	0.67	8.9	6.1
singles	132	3.3	0.70	9.1	6.6
	154	3.6	0.73	9.3	7.0
	176	3.7	0.76	9.5	7.4
	198	3.8	0.78	9.6	7.8
Lactating	110	3.4	0.86	10.5	7.3
twins	132	3.7	0.89	10.7	7.7
	154	4.0	0.92	11.0	8.1
	176	4.3	0.96	11.2	8.6
	198	4.6	0.99	11.4	9.0

National 4-H Livestock Skillathon Nutrition Station Page 3 of 3

State

4-H Livestock Skillathon Quality Assurance Exercise – Team

1) With the information provided below, complete the table and answer the following questions:

Scrapie Tag Number	Today's Weight	Initial Weight 110 Days Ago	<u>Gain</u>	ADG
Lamb 1: <u>1706</u> Lamb 2: 1410	<u>104</u> 118	49 lbs. 61 lbs.		
Lamb 3: 1806 Lamb 4: 2052	103 102	57 lbs. 50 lbs.		
2032			roup ADG Average	e:

- 2) If Lamb #4 was wormy, how much of the Cydectin product would you need to administer?
- 3) You notice lamb #2 limping. After discovering it has foot rot, you decide to treat him. Choose the appropriate product, knowing how much your lamb weighs, how much product would you administer?

What route of administration would you use?

Using today's date, what is the earliest you could market this lamb?

4) You notice that lamb 1706 has developed a cough and is running a temperature of 104°F.

Is this a normal body temperature for a sheep?

From the labels provided select the appropriate antibiotic to treat a respiratory infection in sheep and list it below.

What is the correct dosage and route of administration for this animal?

What is the cost of treatment for this animal?

State 4-H Roundup Livestock Skillathon Contest

Team Presentation Scoring Rubric

The following is the scoring rubric for the Team Presentation portion of the contest. Below it are points to be considered for each criteria of the rubric.

Team Criteria	Points	
Organization of Presentation	1 - 5	
Explanation of Answers and Reasoning	1 - 15	
Use of Relevant Examples or Details to justify decision?	1 - 15	
Agricultural Industry Knowledge and Skill	1 - 10	
Equal Presentation by Team Members	1 - 5	

50 Total Points

- 1. Does it flow? Is it too choppy and hard to understand?
- 2. Can they explain their answers and justify their decision? (Why did they keep or cull?)
- 3. Do they use the numbers and information given in their justification? (EPD, ADG, whatever the scenario calls for)
- 4. Can they relate back to the industry? Does it sound like they understand why this is practical or the impacts of their decisions?
- 5. Did all the team members share an equal amount of the presentation or did someone dominate the presentation?

